Manipulating Gibbs' Phenomenon for Fourier Interpolation

Gilbert Helmberg and Peter Wagner
Institut für Mathematik und Geometrie, Universität Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Austria

Communicated by Paul Nevai
Received September 27, 1994; accepted in revised form April 16, 1996

Abstract

The Fourier interpolation polynomials of a periodic function with an isolated jump discontinuity at a node exhibit for growing order a Gibbs phenomenon. By a suitable definition of the function value at the jump the over- and undershoots on one side may be minimized. (C) 1997 Academic Press

Gibbs' phenomenon appears when a periodic function f (of period 2π, say), having a jump discontinuity, is approximated by the partial sums s_{n} of its Fourier series. Under fast Fourier transformation, f is interpolated instead by a trigonometric polynomial s_{n}^{*} of order n (say) in $2 n$ nodes $j \pi / n(-n<j \leqslant n)$ [5]. Also in this case, a Gibbs phenomenon may be observed with, however, other overshoot and undershoot values [2]. If the jump occurs at an interpolation node, the shape of the Gibbs phenomenon depends on the value of f at the jump (which would be irrelevant for the partial sums s_{n}). The purpose of this note is to exhibit the influence of this value on the shape of the Gibbs phenomenon.

As for mean square approximation by s_{n}, also for interpolation by s_{n}^{*} the Riemann localization principle and the uniform convergence in continuity points are valid [7]. In order to study Gibbs' phenomenon, it therefore suffices, without loss of generality, to consider the function f_{c} defined by

$$
f_{c}(x)=\left\{\begin{array}{lll}
-1 & \text { for } & -\pi<x<0 \tag{1}\\
c & \text { for } & x=0 \\
1 & \text { for } & 0<x<\pi \\
-c & \text { for } & x=\pi
\end{array}\right.
$$

As $n \rightarrow \infty$, the corresponding interpolation functions given for even n by

$$
s_{c, n}^{*}=\frac{\sin (n x)}{n}\left[\frac{c}{\sin (x)}+\sum_{j=1}^{n-1} \frac{(-1)^{j}}{\sin (x-j \pi / n)}\right]
$$

converge pointwise to the limit function S_{c}^{*} given by

$$
\begin{align*}
S_{c}^{*}(x)= & \lim _{n \rightarrow \infty} s_{c, n}^{*}\left(\frac{\pi}{n} x\right) \\
= & c \cdot \frac{\sin (\pi x)}{\pi x}+\frac{\sin (\pi x)}{\pi} \\
& \times\left\{\frac{1}{1-x}-\sum_{k=1}^{\infty} \frac{64 k(2 x-1)}{\left[(4 k+1)^{2}-(2 x-1)^{2}\right]\left[(4 k-1)^{2}-(2 x-1)^{2}\right]}\right\} \tag{2}
\end{align*}
$$

(This is an easy consequence of the formula in [3, Remark 1, p. 393].) The function S_{0}^{*} (the second term of the right member) is odd and it inherits its shape from the functions $s_{0, n}^{*}$: it assumes exactly one extreme value (alternatingly a maximum and a minimum) in the intervals] $k, k+1$ [while $S_{0}^{*}(k)=1(k \in \mathbb{N})$ (Fig. 1). Roughly stated, the superposition of S_{0}^{*} and of the function g defined by

$$
g(x)=\left\{\begin{array}{ll}
\frac{\sin (\pi x)}{\pi x} & \text { for } \\
x \neq 0 \\
1 & \text { for }
\end{array} \quad x=0\right.
$$

in (2) has the following effect: as c increases from 0 to 1 , an additional node x_{c} with $S_{c}^{*}\left(x_{c}\right)=1$ appears and moves from ∞ to 0 . This node introduces in the interval $[k, k+1]$ to which it belongs precisely one additional local extremum. This allows us to reduce-to the right of zero-the deviation of the extreme values of S_{c}^{*} from the interpolation value 1 , at the cost of increasing this deviation to the left of zero.

Figure 1

These heuristic explanations are made exact by the following theorems.

Theorem 1. There is a bijection $c \mapsto x(c)$ of $] 0,1]$ onto $[0, \infty[$ enjoying the following properties:
(a) $\quad S_{c}^{*}(x(c))=1 ;$
(b) $\quad c \mapsto x(c)$ is monotonically decreasing from ∞ to 0 on $] 0,1$;
(c) if $x(c) \in] k, k+1\left[(k \in \mathbb{N})\right.$, then S_{c}^{*} has precisely one local extremum in each of the intervals

$] j, j+1[$	$(1 \leqslant j<k ;$ a maximum for odd j, a minimum for even $j) ;$
$] k, x(c)[$	$($ a maximum for odd k, a minimum for even $k) ;$
$] x(c), k+1[$	$($ a minimum for odd k, a maximum for even $k) ;$
$] j, j+1[\quad$	$(k+1 \leqslant j<\infty ;$ a minimum for odd j, a maximum
	for even $j) ;$

(d) if $x(c) \in\left[0,1\left[\right.\right.$, then S_{c}^{*} has precisely one local extremum in each of the intervals

$$
] j, j+1[\quad(0 \leqslant j<\infty ; \text { a minimum for odd } j, \text { a maximum for even } j) ;
$$

(e) if $x(c)=k \geqslant 1$, then S_{c}^{*} has precisely one local extremum in k (with value $S_{c}^{*}(k)=1$, a maximum for odd k, a minimum for even k) and in each of the intervals
$] j, j+1[\quad(1 \leqslant j<k$; a maximum for odd j, a minimum for even $k)$;
($k \leqslant j<\infty$; a minimum for odd k, a maximum for even k).
(f) In any case, S_{c}^{*} is monotonically increasing in $[-1,0]$ and has a unique extremum in each of the intervals

$$
]-j-1,-j[\quad(j \in \mathbb{N} ; \text { a minimum for odd } j \text {, a maximum for even } j) .
$$

Theorem 2. The function $x(c)$ on $] 0,1]$ and its inverse function $c(x)$ on $[0, \infty[$ are real analytic and given by

$$
c(x)=2 \int_{0}^{1} \frac{t^{x} d t}{(1+t)^{2}}
$$

We shall present proofs for these theorems along two lines of arguments. The proof of Theorem 1 uses elementary properties of trigonometric polynomials as well as known properties of the functions S_{0}^{*}, g and of the values of these functions and their derivatives at the points $k(k \in \mathbb{Z})$. The arguments used for the proof of Theorem 2 at the same time furnish an alternative proof for the assertions (a)-(c) of Theorem 1; they rely on properties of function $\beta(x)$ as listed in [1] and on the partial fraction decomposition of $1 / \sin (\pi x)$.

From [2,3] we retain the following facts.

Lemma 0. The function S_{0}^{*} is odd and enjoys the following properties:
($\left.\mathrm{a}_{0}\right) \quad S_{0}^{*}(k)=1$ for $k \in \mathbb{N} ; S_{0}^{*}(0)=0$;
$\left(\mathrm{b}_{0}\right) \quad S_{0}^{*}$ is monotonically increasing in $[0,1]$;
$\left(\mathrm{c}_{0}\right) \quad S_{0}^{*}$ has precisely one extremum in each of the intervals $] j, j+1[$ $(j \in \mathbb{N}$; a maximum for j odd, a minimum for j even $)$.
(These statements are consequences of corresponding properties of the interpolating trigonometric polynomials $s_{0, n}^{*}$ converging to S_{0}^{*}.)

In formula (2) S_{0}^{*} appears as the sum of a series converging as fast as $\sum_{k=1}^{\infty} 1 / k^{3}$. This representation somewhat blurs its source which is revealed by the formula

$$
\begin{align*}
\frac{\pi}{\sin (\pi x)} S_{0}^{*}(x)= & \frac{1}{1-x}-2 \sum_{j=1}^{\infty}\left[\left(\frac{1}{(4 j-1)-(2 x-1)}-\frac{1}{(4 j-1)+(2 x-1)}\right)\right. \\
& \left.-\left(\frac{1}{(4 j+1)-(2 x-1)}-\frac{1}{(4 j+1)+(2 x-1)}\right)\right] \\
= & \sum_{j=1}^{\infty}(-1)^{j+1}\left(\frac{1}{j-x}+\frac{1}{j+x}\right) \tag{3}\\
= & -\beta(x)-\beta(-x) \tag{4}
\end{align*}
$$

where

$$
\beta(x)=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j+x} \quad[1,8.372 .1] .
$$

Fixing some $k \in \mathbb{N}$ and disregarding the term $1 /(k-x)$, differentiation of the series (3) furnishes a series converging uniformly in $x \in] k-\frac{3}{4}, k+\frac{3}{4}[$. The same is then true for differentiation of S_{0}^{*}, $\operatorname{since} \sin (\pi x) /(k-x)$ is continuously differentiable. As a consequence, S_{0}^{*} is continuously differentiable on \mathbb{R}.

Considering the derivative of S_{0}^{*} at nonnegative $x \notin \mathbb{N}$, we obtain

$$
\begin{aligned}
S_{0}^{* \prime}(x)= & \cos (\pi x) \sum_{j=1}^{\infty}(-1)^{j+1}\left[\frac{1}{j-x}+\frac{1}{j+x}\right] \\
& +\frac{\sin (\pi x)}{\pi} \sum_{j=1}^{\infty}(-1)^{j+1}\left[\frac{1}{(j-x)^{2}}-\frac{1}{(j+x)^{2}}\right] .
\end{aligned}
$$

For $x=0$ this gives

$$
S_{0}^{* \prime}(0)=2 \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}=2 \log 2
$$

For $x \rightarrow k \in \mathbb{N}$ observe that, by $\sin (\pi x)=(-1)^{k+1} \sin (\pi(k-x))$, we have

$$
\begin{aligned}
\lim _{x \rightarrow k} & \frac{\cos (\pi x)+\sin (\pi x) /(\pi(k-x))}{k-x} \\
& =\lim _{x \rightarrow k} \frac{\cos (\pi x)+(-1)^{k+1} \sin (\pi(k-x)) /(\pi(k-x))}{k-x} \\
& =\lim _{x \rightarrow k}\left[-\pi \sin (\pi x)+(-1)^{k+1}\left(\frac{\sin (\pi(k-x))}{\pi(k-x)}\right)^{\prime}\right] /(-1) \\
& =0 .
\end{aligned}
$$

Using the continuity of $S_{0}^{* \prime}$ we obtain

$$
\begin{align*}
S_{0}^{* \prime}(k) & =(-1)^{k+1}\left[\frac{1}{k}+2 \sum_{j=1}^{\infty} \frac{(-1)^{j}}{k+j}\right] \tag{5}\\
& =(-1)^{k+1} \sum_{j=0}^{\infty}(-1)^{j}\left[\frac{1}{k+2 j}-\frac{2}{k+2 j+1}+\frac{1}{k+2 j+2}\right] \\
& =(-1)^{k+1} \sum_{j=0}^{\infty} \frac{2}{(k+2 j)(k+2 j+1)(k+2 j+2)} . \tag{6}
\end{align*}
$$

From (5) and (6) we deduce that (for the upper estimate suppose that $k>2$)

$$
\begin{align*}
& S_{0}^{*^{\prime}}(k)=2\left[\log 2-\left(\sum_{j=1}^{k-1} \frac{(-1)^{j+1}}{j}+\frac{(-1)^{k+1}}{2 k}\right)\right] \tag{7}\\
& \frac{1}{2(k+1)^{2}} \leqslant\left|S_{0}^{*^{\prime}}(k)\right| \leqslant \frac{1}{2(k-2)^{2}} . \tag{8}
\end{align*}
$$

Since $S_{c}^{*}=c \cdot g+S_{0}^{*}(2)$, we list without proof the properties of the function g as compared to those of S_{0}^{*} established in Lemma 0 (Fig. 1).

Lemma 1. The function g is even and enjoys the following properties:
($\left.\mathrm{a}_{1}\right) \quad g(k)=1$ for $k=0 ; g(k)=0$ for $k \in \mathbb{N}$;
$\left(\mathrm{b}_{1}\right) \quad g$ is monotonically decreasing in $[0,1]$;
$\left(\mathrm{c}_{1}\right) \mathrm{g}$ has precisely one extremum in each of the intervals $] j, j+1[$ $(j \in \mathbb{N}$; a minimum for j odd, a maximum for j even $)$.

Note that $g^{\prime}(k)=(-1)^{k} / k$ for $k \neq 0$. Comparing the values of the functions S_{0}^{*}, g, and of their derivatives we deduce from (6), (7), and (8):

$$
\begin{align*}
\operatorname{sign} g(x) & =\left\{\begin{array}{lll}
\operatorname{sign}\left(S_{0}^{*}(x)+1\right) & \text { for } & x \leqslant-1, \\
-\operatorname{sign}\left(S_{0}^{*}(x)-1\right) & \text { for } & x \geqslant 1,
\end{array}\right. \tag{9}\\
\operatorname{sign} g^{\prime}(k) & =-\operatorname{sign} S_{0}^{* \prime}(k) \tag{10}\\
\left|g^{\prime}(k)\right| & >\left|S_{0}^{* \prime}(k)\right| . \tag{11}
\end{align*}
$$

We now study the effect of adding $c \cdot g$ to S_{0}^{*} for $0<c \leqslant 1$. By (9) we see that in] $-\infty,-1$] only the "hills" of the graph of S_{0}^{*} are heightened and the "valleys" are deepened. Also by (9) it is to be expected that in [1, ∞ [this effect is reversed and, in fact, also the type of the extrema may be changed. While in $[-1,0]$ the function S_{c}^{*} obviously increases from -1 to c, the situation in $[0,1]$ may depend on c.

For $k \in \mathbb{N}$, we observe that by (10), (11), and by the linearity in c of $(c \cdot g)^{\prime}(k)$ there has to exist a solution $\left.c_{k} \in\right] 0,1[$ of the equation

$$
c_{k} \cdot g^{\prime}(k)+S_{0}^{* \prime}(k)=0 ;
$$

in fact,

$$
\begin{equation*}
c_{k}=k \sum_{j=0}^{\infty} \frac{2}{(k+2 j)(k+2 j+1)(k+2 j+2)} \quad \text { by (6). } \tag{12}
\end{equation*}
$$

For formal reasons we put $c_{0}=1$.
LEMMA 2. (i) $1>c_{1}>\cdots>c_{k}>c_{k+1}>\cdots>0$;
(ii) $\lim _{k \rightarrow \infty} c_{k}=0$.

Proof. The last inequality of (i) and assertion (ii) are evident (cf. also (12)), the first inequality of (i) follows from (5) or (11). In order to show $c_{k}>c_{k+1}$ put $u_{k}=(-1)^{k+1} S_{0}^{* \prime}(k)$ and observe

$$
\begin{align*}
u_{k} & \geqslant u_{k+1} & & \text { by (6), } \\
u_{k} & =\frac{2}{k(k+1)(k+2)}+u_{k+2} & & \text { by (6), } \\
c_{k}-c_{k+2} & =k u_{k}-(k+2) u_{k+2} & & \text { by (12), } \tag{12}\\
& =2\left(\frac{1}{k+1}-\frac{1}{k+2}-u_{k+2}\right) & & \\
& =2 u_{k+1} & & \text { by }(5) . \tag{5}
\end{align*}
$$

We conclude

$$
c_{k}=2 \sum_{j=0}^{\infty} u_{k+1+2 j}
$$

from which our assertion follows.
Theorem 1 now follows from Propositions 1 and 2 below.

Proposition 1. For $c \in] c_{k+1}, c_{k}[(k \in \mathbb{N})$, resp. for $\left.c \in] c_{1}, 1\right](k=0)$ there exists a unique $x(c) \in] k, k+1[$ such that
(a') $\quad S_{c}^{*}(x(c))=1 ;$
($\left.\mathrm{b}^{\prime}\right) \quad x(c)$ decreases monotonically from $k+1$ to k on $] c_{k+1}, c_{k}[$;
(c') S_{c}^{*} has precisely one local extremum in each of the intervals as mentioned in Theorem 1(c), (resp. Theorem 1(d)).

Proof. The derivative of S_{c}^{*} in the positive nodes $j \in \mathbb{N}$ is

$$
\begin{aligned}
S_{c}^{* \prime}(j) & =c \frac{(-1)^{j}}{j}+(-1)^{j+1} u_{j} \\
& =\frac{(-1)^{j}}{j}\left(c-j u_{j}\right) \\
& =\frac{(-1)^{j}}{j}\left(c-c_{j}\right) .
\end{aligned}
$$

If $c \in] c_{k+1}, c_{k}[$, then

$$
c-c_{j} \begin{cases}<c_{k}-c_{j} \leqslant 0 & \text { for } j \leqslant k, \\ >c_{k+1}-c_{j} \geqslant 0 & \text { for } j \geqslant k+1 .\end{cases}
$$

Consequently, the sign of $S_{c}^{*^{\prime}}(j)$ is alternating for $j \leqslant k$ (and the same as that of $\left.S_{0}^{* \prime}(j)\right)$ as well as for $j \geqslant k+1$ (and the opposite as that of $S_{0}^{* \prime}(j)$), while it is the same for $j=k$ and $j=k+1$. Since $S_{c}^{*}(j)=1$ and since S_{c}^{*} is continuously differentiable, there has to exist a $x(c) \in] k, k+1$ [such that $S_{c}^{*}(x(c))=1$, and there must exist at least two local extreme values (a maximum and a minimum) instead of one in this interval. The number of local extreme values of S_{c}^{*} in $] 0, n[(n \geqslant k+1)$ is therefore at least n.

Suppose now there were an additional point \bar{x}_{c} in some interval $] j, j+1$ [$\left(j \in \mathbb{N}_{0}\right)$ satisfying $S_{c}^{*}\left(\bar{x}_{c}\right)=1$. Then there would have to exist a second one $\left.\overline{\bar{x}}_{c} \in\right] j, j+1$ [(possibly coinciding with \bar{x}_{c}) satisfying $S_{c}^{*}\left(\overline{\bar{x}}_{c}\right)=1$. This would introduce two additional local extreme values for S_{c}^{*} in $] j, j+1[$. Since S_{c}^{*} is the pointwise limit of a sequence of trigonometric polynomials (2), there would have to be a trigonometric polynomial

$$
h_{n}(x)=s_{c, n}^{*}\left(\frac{\pi x}{n}\right)
$$

of even order n with period $2 n$ such that the graph of h_{n} has at least $n+1$ local extreme values between 0 and n. Note that h_{n} satisfies the symmetry relation

$$
h_{n}(x-n)=s_{c, n}^{*}\left(\frac{\pi x}{n}-\pi\right)=-h_{n}(x) .
$$

The number of local extreme values of h_{n} in a period would then be at least $2 n+2$ which is impossible.

Consider now the case $c_{1}<c<1=c_{0}$. Then $S_{c}^{* \prime}(1)<0$, so there exists $x(c) \in] 0,1\left[\right.$ such that $S_{c}^{*}(x(c))=1$ and there has to exist a local maximum of S_{c}^{*} in $] x(c), 1[$. This last assertion is trivial for $c=1$ and $x(c)=0$. The same reasoning as before asserts the uniqueness of $x(c)$ in these cases.

In order to show assertion (b^{\prime}), for simplicity suppose k to be odd (a similar reasoning applies for even k). Then

$$
S_{c}^{*}(x)-1\left\{\begin{array}{lll}
>0 & \text { for } & x \in] k, x(c)[\\
<0 & \text { for } & x \in] x(c), k+1[,
\end{array}\right.
$$

and $g(x)<0$ in $] k, k+1$ [. Let $c_{k}>\bar{c}>c>c_{k+1}$. Then

$$
\left.S_{\bar{c}}^{*}(x)=S_{c}^{*}(x)+(\bar{c}-c) g(x)<S_{c}^{*}(x) \quad \text { for } \quad x \in\right] k, k+1[
$$

and therefore $x(\bar{c})<x(c)$.
Proposition 2. For $k \in \mathbb{N}$ and $c=c_{k}$ let $x\left(c_{k}\right)=k$. Then $S_{c_{k}}^{*}\left(x\left(c_{k}\right)\right)=1$ and $S_{c_{k}}^{*}$ has a local extremum in k (a maximum for k odd, a minimum for k even) and precisely one local extreme value in any of the intervals as mentioned in Theorem 1(e).

Proof. If $c=c_{k}(k \in \mathbb{N})$ then $S_{c_{k}}^{*^{\prime}}(k)=0$ while $S_{c_{k}}^{* \prime}(k-1)$ and $S_{c_{k}}^{* \prime}(k+1)$ are nonzero and of different sign. A reasoning as above shows that for $k \geqslant 2$ there have to exist local extreme values in $] k-1, k[$ and $] k, k+1[$, and in k (with modifications for $k=1$ as stated in Theorem 1). A counting argument as above shows that $S_{c_{k}}^{*}(x) \neq 1$ for all positive $x \notin \mathbb{N}$.

Having established the existence of the order-reversing bijection $c \mapsto x(c)$ of] 0,1] onto [$0, \infty$ [we may consider its inverse $x \mapsto c(x)$ given by the solution of the equations

$$
\begin{array}{rll}
c(x) \cdot g^{\prime}(x)+S_{0}^{* \prime}(x)=0 & \text { for } & x=k \in \mathbb{N}, \\
c(x) \cdot g(x)+S_{0}^{*}(x)=1 & \text { for } & 0<x \notin \mathbb{N} .
\end{array}
$$

Explicitly, we get

$$
\begin{aligned}
& c(k)=c_{k} \quad \text { for } \quad x=k \in \mathbb{N}, \\
& c(x)=\frac{\pi x}{\sin (\pi x)}-\frac{x}{1-x}+\sum_{j=1}^{\infty} \frac{64 j x(2 x-1)}{\left[(4 j+1)^{2}-(2 x-1)^{2}\right]\left[(4 j-1)^{2}-(2 x-1)^{2}\right]}
\end{aligned}
$$

$$
\text { for } 0<x \notin \mathbb{N} \text {. }
$$

The function $c(x)$ and its inverse function $x(c)$ are real analytic as may be seen entering the second line of arguments leading to a proof of Theorem 2. Continuing on (4) observe that by $[1,1.422 .3]$ for $x \notin \mathbb{N}$

$$
\begin{aligned}
\frac{\pi}{\sin (\pi x)} & =\frac{1}{x}+\sum_{j=1}^{\infty}(-1)^{j}\left(\frac{1}{x-j}+\frac{1}{x+j}\right) \\
& =-\frac{1}{x}+\sum_{j=0}^{\infty}(-1)^{j}\left(\frac{1}{j+x}-\frac{1}{j-x}\right) \\
& =-\frac{1}{x}+\beta(x)-\beta(-x),
\end{aligned}
$$

and, therefore,

$$
\begin{align*}
S_{c}^{*}(x)-1 & =c \frac{\sin (\pi x)}{\pi x}+S_{0}^{*}(x)-1 \\
& =\frac{\sin (\pi x)}{\pi x}(c-x \beta(x)-x \beta(-x)+1-x \beta(x)+x \beta(-x)) \\
& =\frac{\sin (\pi x)}{\pi x}(c+1-2 x \beta(x)) . \tag{13}
\end{align*}
$$

The function $x \beta(x)$ is meromorphic with simple poles in $-\mathbb{N}$, therefore S_{c}^{*} is an entire function.

By (13) we have $S_{c}^{*}(x)=1$ iff $x \in \mathbb{N}$ or $c=2 x \beta(x)-1$. Let us therefore define $c(x)=2 x \beta(x)-1$ and consider $x>-1$. By [1, 3.251.7] (where the range of validity should read $\operatorname{Re} \mu>-1$ (cf. [4, Section 68, (2), p. 169]) we have

$$
\begin{align*}
c(x) & =4 \int_{0}^{1} \frac{t^{2 x+1}}{\left(1+t^{2}\right)^{2}} d t \\
& =2 \int_{0}^{1} \frac{t^{x} d t}{(1+t)^{2}} \quad \text { for } \quad x>-1, \\
c^{\prime}(x) & =2 \int_{0}^{1} \frac{t^{x} \log (t)}{\left(1+t^{2}\right)^{2}} d t<0 \quad \text { for } \quad x>-1, \tag{14}
\end{align*}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} c(x) & =0 \\
\lim _{x \rightarrow-1} c(x) & =\infty \\
c(0) & =1
\end{aligned}
$$

Remark 1. For $n \in \mathbb{N}$ by [1, 8.375.2] and in agreement with (7) and (12) we have

$$
\begin{aligned}
c(n) & =2 n \beta(n)-1 \\
& =2 n(-1)^{n+1}\left[\log (2)+\sum_{j=1}^{n-1} \frac{(-1)^{j}}{j}\right]-1
\end{aligned}
$$

in particular,

$$
\begin{aligned}
c(1) & =2 \log (2)-1 \approx 0.386, \\
c(2) & =3-4 \log (2) \approx 0.227, \\
c\left(\frac{1}{2}\right) & =2 \int_{0}^{1} \frac{\sqrt{t} d t}{(1+t)^{2}} \\
& =\frac{\pi}{2}-1 \approx 0.571 .
\end{aligned}
$$

Since

$$
\beta(x+1)=\frac{1}{x}-\beta(x)
$$

we get

$$
c\left(n+\frac{1}{2}\right)=(-1)^{n} \frac{(2 n+1) \pi}{2}+2(2 n+1) \sum_{k=1}^{n} \frac{(-1)^{n+k}}{2 k-1}-1 ;
$$

in particular

$$
c\left(\frac{3}{2}\right)=5-\frac{3 \pi}{2} \approx 0.288
$$

Remark 2. As apparant from (14) the function $c(x)$ is monotonically decreasing on the interval $]-1, \infty[$. The real analytic bijective mapping $c=c(x) \Leftrightarrow x=x(c)$ may therefore be extended to a decreasing mapping $] 0, \infty[\leftrightarrow]-1, \infty[$.

Remark 3. From (13) one may infer that

$$
\left|S_{c}^{*}(z)\right| \leqslant C \cdot e^{\pi|\operatorname{Im}(z)|} \quad \text { for } \quad z \in \mathbb{C}
$$

By the Paley-Wiener theorem [6, VI. 4 and I.13], S_{c}^{*} is the Fourier transform of a distribution with compact support. In the case of $c=0$, this Fourier transform representation is in fact given by

$$
\begin{aligned}
S_{0}^{*}(x) & =\frac{i}{2 \pi} \lim _{\varepsilon \rightarrow 0}\left\{\int_{-\pi}^{-\varepsilon} e^{-i x \xi} \cot \left(\frac{\xi}{2}\right) d \xi+\int_{\varepsilon}^{\pi} e^{-i x \xi} \cot \left(\frac{\xi}{2}\right) d \xi\right\} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (x \xi) \cot \left(\frac{\xi}{2}\right) d \xi
\end{aligned}
$$

Remark 4. In order to inspect some numerical evidence put $c=c(3 / 2) \approx 0.288$. For the evaluation of

$$
S_{0}^{*}(x)=-\frac{\sin (\pi x)}{\pi}(\beta(x)+\beta(-x))
$$

one can use the fast convergent series

$$
\beta(x)=\sum_{j=0}^{\infty} \frac{j!2^{-j-1}}{x(x+1) \cdots(x+j)}
$$

cf. [$1,8.372 .3$]. A computation of values of S_{c}^{*} to three decimals with stepsize 0.01 reveals the local extreme values:

$$
\begin{aligned}
& S_{c}^{*}(1.19) \approx 1.008 \\
& S_{c}^{*}(1.75) \approx 0.996 \\
& S_{c}^{*}(2.52) \approx 1.013 \\
& S_{c}^{*}(3.50) \approx 0.986 \\
& S_{c}^{*}(4.49) \approx 1.013
\end{aligned}
$$

from which one may infer that

$$
\left|S_{c}^{*}(x)-1\right| \leqslant 0.014 \quad \text { for all } \quad x \geqslant 1,
$$

but

$$
S_{c}^{*}(-1.40) \approx-1.128
$$

Note that to the right of 1 the maximal deviation of S_{c}^{*} from 1 appears with abscissa ≈ 3.50.

Suppose the intention is now to reduce the Gibbs phenomenon by an appropriate choice of $c=\mathbf{c}$ as much as possible in the following sense: to the right of the first point in which the graph of $S_{\mathbf{c}}^{*}$ crosses the level 1 the deviation of S_{c}^{*} from 1 should be as small as possible. Numerical evidence seems to indicate that this is obtained for $\mathbf{c} \approx 0.265$ with a corresponding value of $x(\mathbf{c}) \approx 1.66$ (Fig. 2). In $x_{1} \approx 1.22$ the function $S_{\mathbf{c}}^{*}$ attains an absolute maximum $S_{\mathrm{c}}^{*}\left(x_{1}\right) \approx 1.012$, in $x_{2} \approx 3.50$ a local minimum $S_{\mathrm{c}}^{*}\left(x_{2}\right) \approx$ 0.988 , and $S_{\mathbf{c}}^{*}\left(x_{1}\right) \geqslant S_{\mathbf{c}}^{*}(x) \geqslant S_{\mathbf{c}}^{*}\left(x_{2}\right)$ for $x \geqslant 1$. $S_{\mathbf{c}}^{*}$ is still monotonically increasing in $[-1,1]$ and assumes in $x_{3} \approx-1.40$ an absolute minimum value $S_{\mathbf{c}}^{*}\left(x_{3}\right) \approx-1.123$.

Figure 2

Figure 3
As a consequence, defining the value of a function f at a jump node x_{0} to be

$$
f\left(x_{0}\right)=\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}+\mathbf{c} \cdot \frac{f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)}{2}
$$

the Gibbs phenomenon for Fourier interpolation with $2 n$ equidistant nodes is reduced to an eventual deviation of less than 1.2% of $\left(f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)\right) / 2$ from the function value $f(x)$ to the right side of x_{0}, at the cost of increasing the absolute undershoot to the left side of x_{0} to approximately 12.3% of $\left(f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)\right) / 2$. This should be compared with the maximal overshoot of 17.9% of half the jump size for the classical Gibbs phenomenon and of 28.2% of half the jump size for $c=1$. In this last case (Fig. 3) the function S_{1}^{*} assumes the same form as if the jump occurred outside of a node, e.g., in an irrational multiple of π instead of in 0 .

REFERENCES

1. I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products," Academic Press, New York/London, 1965.
2. G. Helmberg, The Gibbs phenomenon for Fourier interpolation, J. Approx. Theory 78 (1994), 41-63.
3. G. Helmberg, A limit function for equidistant Fourier interpolation, J. Approx. Theory $\mathbf{8 1}$ (1995), 389-396.
4. N. Nielsen, "Die Gammafunktion," Chelsea, New York, 1965.
5. H. R. Schwarz, "Numerische Mathematik," A. G. Teubner, Stuttgart, 1986.
6. K. Yosida, "Functional Analysis," Springer-Verlag, Berlin/Heidelberg/New York, 1966.
7. A. Zygmund, "Trigonometric Ser.," Vols. 1, 2, Cambridge Univ. Press, Cambridge, 1968.
