Manipulating Gibbs' Phenomenon for Fourier Interpolation

Gilbert Helmberg and Peter Wagner

Institut für Mathematik und Geometrie, Universität Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Austria

Communicated by Paul Nevai

Received September 27, 1994; accepted in revised form April 16, 1996

The Fourier interpolation polynomials of a periodic function with an isolated jump discontinuity at a node exhibit for growing order a Gibbs phenomenon. By a suitable definition of the function value at the jump the over- and undershoots on one side may be minimized. © 1997 Academic Press

Gibbs' phenomenon appears when a periodic function f (of period 2π , say), having a jump discontinuity, is approximated by the partial sums s_n of its Fourier series. Under fast Fourier transformation, f is interpolated instead by a trigonometric polynomial s_n^* of order n (say) in 2n nodes $j\pi/n$ ($-n < j \le n$) [5]. Also in this case, a Gibbs phenomenon may be observed with, however, other overshoot and undershoot values [2]. If the jump occurs at an interpolation node, the shape of the Gibbs phenomenon depends on the value of f at the jump (which would be irrelevant for the partial sums s_n). The purpose of this note is to exhibit the influence of this value on the shape of the Gibbs phenomenon.

As for mean square approximation by s_n , also for interpolation by s_n^* the Riemann localization principle and the uniform convergence in continuity points are valid [7]. In order to study Gibbs' phenomenon, it therefore suffices, without loss of generality, to consider the function f_c defined by

$$f_c(x) = \begin{cases} -1 & \text{for } -\pi < x < 0, \\ c & \text{for } x = 0, \\ 1 & \text{for } 0 < x < \pi, \\ -c & \text{for } x = \pi. \end{cases}$$
(1)

As $n \to \infty$, the corresponding interpolation functions given for even *n* by

$$s_{c,n}^* = \frac{\sin(nx)}{n} \left[\frac{c}{\sin(x)} + \sum_{j=1}^{n-1} \frac{(-1)^j}{\sin(x-j\pi/n)} \right]$$

0021-9045/97 \$25.00

Copyright © 1997 by Academic Press All rights of reproduction in any form reserved. converge pointwise to the limit function S_c^* given by

$$S_{c}^{*}(x) = \lim_{n \to \infty} s_{c,n}^{*}\left(\frac{\pi}{n}x\right)$$
$$= c \cdot \frac{\sin(\pi x)}{\pi x} + \frac{\sin(\pi x)}{\pi}$$
$$\times \left\{\frac{1}{1-x} - \sum_{k=1}^{\infty} \frac{64k(2x-1)}{\left[(4k+1)^{2} - (2x-1)^{2}\right]\left[(4k-1)^{2} - (2x-1)^{2}\right]}\right\}$$
(2)

(This is an easy consequence of the formula in [3, Remark 1, p. 393].) The function S_0^* (the second term of the right member) is odd and it inherits its shape from the functions $s_{0,n}^*$: it assumes exactly one extreme value (alternatingly a maximum and a minimum) in the intervals]k, k+1[while $S_0^*(k) = 1$ ($k \in \mathbb{N}$) (Fig. 1). Roughly stated, the superposition of S_0^* and of the function g defined by

$$g(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & \text{for } x \neq 0, \\ 1 & \text{for } x = 0 \end{cases}$$

in (2) has the following effect: as c increases from 0 to 1, an additional node x_c with $S_c^*(x_c) = 1$ appears and moves from ∞ to 0. This node introduces in the interval [k, k+1] to which it belongs precisely one additional local extremum. This allows us to reduce—to the right of zero—the deviation of the extreme values of S_c^* from the interpolation value 1, at the cost of increasing this deviation to the left of zero.

FIGURE 1

These heuristic explanations are made exact by the following theorems.

THEOREM 1. There is a bijection $c \mapsto x(c)$ of]0, 1] onto $[0, \infty[$ enjoying the following properties:

(a) $S_c^*(x(c)) = 1;$

(b) $c \mapsto x(c)$ is monotonically decreasing from ∞ to 0 on]0, 1];

(c) if $x(c) \in]k, k+1[(k \in \mathbb{N}), then S_c^* has precisely one local extremum in each of the intervals$

] <i>j</i> , <i>j</i> +1[$(1 \le j < k; a maximum for odd j, a minimum for even j)$
] <i>k</i> , <i>x</i> (<i>c</i>)[(a maximum for odd k, a minimum for even k);
] $x(c), k+1$ [(a minimum for odd k, a maximum for even k);
] <i>j</i> , <i>j</i> +1[$(k+1 \leq j < \infty; a \text{ minimum for odd } j, a \text{ maximum}$
	for even j);

(d) if $x(c) \in [0, 1[$, then S_c^* has precisely one local extremum in each of the intervals

j, j+1[$(0 \le j < \infty; a \text{ minimum for odd } j, a \text{ maximum for even } j);$

(e) if $x(c) = k \ge 1$, then S_c^* has precisely one local extremum in k (with value $S_c^*(k) = 1$, a maximum for odd k, a minimum for even k) and in each of the intervals

] j, j+1 [$(1 \le j < k; a \text{ maximum for odd } j, a \text{ minimum for even } k);$

 $(k \leq j < \infty; a \text{ minimum for odd } k, a \text{ maximum for even } k).$

(f) In any case, S_c^* is monotonically increasing in [-1, 0] and has a unique extremum in each of the intervals

]-j-1, -j[$(j \in \mathbb{N}; a \text{ minimum for odd } j, a \text{ maximum for even } j).$

THEOREM 2. The function x(c) on]0, 1] and its inverse function c(x) on $[0, \infty[$ are real analytic and given by

$$c(x) = 2 \int_0^1 \frac{t^x dt}{(1+t)^2}.$$

We shall present proofs for these theorems along two lines of arguments. The proof of Theorem 1 uses elementary properties of trigonometric polynomials as well as known properties of the functions S_0^* , g and of the values of these functions and their derivatives at the points k ($k \in \mathbb{Z}$). The arguments used for the proof of Theorem 2 at the same time furnish an alternative proof for the assertions (a)–(c) of Theorem 1; they rely on properties of function $\beta(x)$ as listed in [1] and on the partial fraction decomposition of $1/\sin(\pi x)$.

From [2, 3] we retain the following facts.

LEMMA 0. The function S_0^* is odd and enjoys the following properties:

(a₀) $S_0^*(k) = 1$ for $k \in \mathbb{N}$; $S_0^*(0) = 0$;

 (b_0) S_0^* is monotonically increasing in [0, 1];

 (c_0) S_0^* has precisely one extremum in each of the intervals]j, j+1[$(j \in \mathbb{N}; a \text{ maximum for } j \text{ odd, a minimum for } j \text{ even}).$

(These statements are consequences of corresponding properties of the interpolating trigonometric polynomials $s_{0,n}^*$ converging to S_0^* .)

In formula (2) S_0^* appears as the sum of a series converging as fast as $\sum_{k=1}^{\infty} 1/k^3$. This representation somewhat blurs its source which is revealed by the formula

$$\frac{\pi}{\sin(\pi x)} S_0^*(x) = \frac{1}{1-x} - 2 \sum_{j=1}^{\infty} \left[\left(\frac{1}{(4j-1) - (2x-1)} - \frac{1}{(4j-1) + (2x-1)} \right) - \left(\frac{1}{(4j+1) - (2x-1)} - \frac{1}{(4j+1) + (2x-1)} \right) \right]$$
$$= \sum_{j=1}^{\infty} (-1)^{j+1} \left(\frac{1}{j-x} + \frac{1}{j+x} \right)$$
(3)
$$= -\beta(x) - \beta(-x),$$
(4)

where

$$\beta(x) = \sum_{j=0}^{\infty} \frac{(-1)^j}{j+x} \qquad [1, 8.372.1].$$

Fixing some $k \in \mathbb{N}$ and disregarding the term 1/(k-x), differentiation of the series (3) furnishes a series converging uniformly in $x \in [k - \frac{3}{4}, k + \frac{3}{4}[$. The same is then true for differentiation of S_0^* , since $\sin(\pi x)/(k-x)$ is continuously differentiable. As a consequence, S_0^* is continuously differentiable on \mathbb{R} .

Considering the derivative of S_0^* at nonnegative $x \notin \mathbb{N}$, we obtain

$$S_0^{*'}(x) = \cos(\pi x) \sum_{j=1}^{\infty} (-1)^{j+1} \left[\frac{1}{j-x} + \frac{1}{j+x} \right] \\ + \frac{\sin(\pi x)}{\pi} \sum_{j=1}^{\infty} (-1)^{j+1} \left[\frac{1}{(j-x)^2} - \frac{1}{(j+x)^2} \right].$$

For x = 0 this gives

$$S_0^{*\prime}(0) = 2 \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} = 2 \log 2.$$

For $x \to k \in \mathbb{N}$ observe that, by $\sin(\pi x) = (-1)^{k+1} \sin(\pi(k-x))$, we have

$$\lim_{x \to k} \frac{\cos(\pi x) + \sin(\pi x) / (\pi (k - x))}{k - x}$$

=
$$\lim_{x \to k} \frac{\cos(\pi x) + (-1)^{k+1} \sin(\pi (k - x)) / (\pi (k - x))}{k - x}$$

=
$$\lim_{x \to k} \left[-\pi \sin(\pi x) + (-1)^{k+1} \left(\frac{\sin(\pi (k - x))}{\pi (k - x)} \right)' \right] / (-1)$$

= 0.

Using the continuity of $S_0^{*'}$ we obtain

$$S_0^{*\prime}(k) = (-1)^{k+1} \left[\frac{1}{k} + 2 \sum_{j=1}^{\infty} \frac{(-1)^j}{k+j} \right]$$
(5)
$$= (-1)^{k+1} \sum_{j=0}^{\infty} (-1)^j \left[\frac{1}{k+2j} - \frac{2}{k+2j+1} + \frac{1}{k+2j+2} \right]$$
$$= (-1)^{k+1} \sum_{j=0}^{\infty} \frac{2}{(k+2j)(k+2j+1)(k+2j+2)}.$$
(6)

From (5) and (6) we deduce that (for the upper estimate suppose that k > 2)

$$S_0^{*'}(k) = 2 \left[\log 2 - \left(\sum_{j=1}^{k-1} \frac{(-1)^{j+1}}{j} + \frac{(-1)^{k+1}}{2k} \right) \right], \tag{7}$$

$$\frac{1}{2(k+1)^2} \leqslant |S_0^{*'}(k)| \leqslant \frac{1}{2(k-2)^2}.$$
(8)

Since $S_c^* = c \cdot g + S_0^*$ (2), we list without proof the properties of the function g as compared to those of S_0^* established in Lemma 0 (Fig. 1).

LEMMA 1. The function g is even and enjoys the following properties:

(a₁) g(k) = 1 for k = 0; g(k) = 0 for $k \in \mathbb{N}$;

 (b_1) g is monotonically decreasing in [0, 1];

 (c_1) g has precisely one extremum in each of the intervals]j, j+1[$(j \in \mathbb{N}; a minimum for j odd, a maximum for j even).$

Note that $g'(k) = (-1)^k/k$ for $k \neq 0$. Comparing the values of the functions S_0^* , g, and of their derivatives we deduce from (6), (7), and (8):

$$\operatorname{sign} g(x) = \begin{cases} \operatorname{sign}(S_0^*(x) + 1) & \text{for } x \leq -1, \\ -\operatorname{sign}(S_0^*(x) - 1) & \text{for } x \geq 1, \end{cases}$$
(9)

$$\operatorname{sign} g'(k) = -\operatorname{sign} S_0^{*'}(k) \qquad \text{for} \quad k \in \mathbb{N},$$
(10)

$$|g'(k)| > |S_0^{*'}(k)|.$$
(11)

We now study the effect of adding $c \cdot g$ to S_0^* for $0 < c \le 1$. By (9) we see that in $] -\infty, -1]$ only the "hills" of the graph of S_0^* are heightened and the "valleys" are deepened. Also by (9) it is to be expected that in $[1, \infty]$ this effect is reversed and, in fact, also the type of the extrema may be changed. While in [-1, 0] the function S_c^* obviously increases from -1 to c, the situation in [0, 1] may depend on c.

For $k \in \mathbb{N}$, we observe that by (10), (11), and by the linearity in c of $(c \cdot g)'(k)$ there has to exist a solution $c_k \in]0, 1[$ of the equation

$$c_k \cdot g'(k) + S_0^{*'}(k) = 0;$$

in fact,

$$c_k = k \sum_{j=0}^{\infty} \frac{2}{(k+2j)(k+2j+1)(k+2j+2)} \qquad \text{by (6).}$$
(12)

For formal reasons we put $c_0 = 1$.

LEMMA 2. (i) $1 > c_1 > \cdots > c_k > c_{k+1} > \cdots > 0;$ (ii) $\lim_{k \to \infty} c_k = 0.$

Proof. The last inequality of (i) and assertion (ii) are evident (cf. also (12)), the first inequality of (i) follows from (5) or (11). In order to show $c_k > c_{k+1}$ put $u_k = (-1)^{k+1} S_0^{*'}(k)$ and observe

$$u_k \geqslant u_{k+1} \qquad \qquad \text{by (6)},$$

$$u_k = \frac{2}{k(k+1)(k+2)} + u_{k+2}$$
 by (6),

$$c_{k} - c_{k+2} = ku_{k} - (k+2)u_{k+2}$$
 by (12),
$$= 2\left(\frac{1}{k+1} - \frac{1}{k+2} - u_{k+2}\right)$$
$$= 2u_{k+1}$$
 by (5).

We conclude

$$c_k = 2\sum_{j=0}^{\infty} u_{k+1+2j}$$

from which our assertion follows.

Theorem 1 now follows from Propositions 1 and 2 below.

PROPOSITION 1. For $c \in]c_{k+1}, c_k[(k \in \mathbb{N}), resp. for <math>c \in]c_1, 1]$ (k=0) there exists a unique $x(c) \in]k, k+1[$ such that

(a') $S_c^*(x(c)) = 1;$

(b') x(c) decreases monotonically from k+1 to k on $]c_{k+1}, c_k[;$

(c') S_c^* has precisely one local extremum in each of the intervals as mentioned in Theorem 1(c), (resp. Theorem 1(d)).

Proof. The derivative of S_c^* in the positive nodes $j \in \mathbb{N}$ is

$$S_{c}^{*'}(j) = c \frac{(-1)^{j}}{j} + (-1)^{j+1} u_{j}$$
$$= \frac{(-1)^{j}}{j} (c - ju_{j})$$
$$= \frac{(-1)^{j}}{j} (c - c_{j}).$$

If $c \in]c_{k+1}, c_k[$, then

$$c-c_{j} \begin{cases} < c_{k}-c_{j} \leqslant 0 & \text{ for } j \leqslant k, \\ > c_{k+1}-c_{j} \geqslant 0 & \text{ for } j \geqslant k+1. \end{cases}$$

Consequently, the sign of $S_c^{*'}(j)$ is alternating for $j \le k$ (and the same as that of $S_0^{*'}(j)$) as well as for $j \ge k + 1$ (and the opposite as that of $S_0^{*'}(j)$), while it is the same for j = k and j = k + 1. Since $S_c^{*}(j) = 1$ and since S_c^{*} is continuously differentiable, there has to exist a $x(c) \in]k, k + 1[$ such that $S_c^{*}(x(c)) = 1$, and there must exist at least two local extreme values (a maximum and a minimum) instead of one in this interval. The number of local extreme values of S_c^{*} in]0, n[$(n \ge k + 1)$ is therefore at least n.

Suppose now there were an additional point \bar{x}_c in some interval]j, j+1[$(j \in \mathbb{N}_0)$ satisfying $S_c^*(\bar{x}_c) = 1$. Then there would have to exist a second one $\bar{x}_c \in]j, j+1[$ (possibly coinciding with \bar{x}_c) satisfying $S_c^*(\bar{x}_c) = 1$. This would introduce two additional local extreme values for S_c^* in]j, j+1[. Since S_c^* is the pointwise limit of a sequence of trigonometric polynomials (2), there would have to be a trigonometric polynomial

$$h_n(x) = s_{c,n}^* \left(\frac{\pi x}{n}\right)$$

of even order *n* with period 2n such that the graph of h_n has at least n + 1 local extreme values between 0 and *n*. Note that h_n satisfies the symmetry relation

$$h_n(x-n) = s_{c,n}^*\left(\frac{\pi x}{n} - \pi\right) = -h_n(x).$$

The number of local extreme values of h_n in a period would then be at least 2n + 2 which is impossible.

Consider now the case $c_1 < c < 1 = c_0$. Then $S_c^{*'}(1) < 0$, so there exists $x(c) \in]0, 1[$ such that $S_c^{*}(x(c)) = 1$ and there has to exist a local maximum of S_c^{*} in]x(c), 1[. This last assertion is trivial for c = 1 and x(c) = 0. The same reasoning as before asserts the uniqueness of x(c) in these cases.

In order to show assertion (b'), for simplicity suppose k to be odd (a similar reasoning applies for even k). Then

$$S_{c}^{*}(x) - 1 \begin{cases} > 0 & \text{for } x \in]k, x(c)[, \\ < 0 & \text{for } x \in]x(c), k+1[, \end{cases}$$

and g(x) < 0 in]k, k+1[. Let $c_k > \bar{c} > c > c_{k+1}$. Then

$$S_{\bar{c}}^{*}(x) = S_{c}^{*}(x) + (\bar{c} - c) g(x) < S_{c}^{*}(x) \quad \text{for} \quad x \in]k, k + 1[$$

and therefore $x(\bar{c}) < x(c)$.

PROPOSITION 2. For $k \in \mathbb{N}$ and $c = c_k$ let $x(c_k) = k$. Then $S_{c_k}^*(x(c_k)) = 1$ and $S_{c_k}^*$ has a local extremum in k (a maximum for k odd, a minimum for k even) and precisely one local extreme value in any of the intervals as mentioned in Theorem 1(e). *Proof.* If $c = c_k$ $(k \in \mathbb{N})$ then $S_{c_k}^{*'}(k) = 0$ while $S_{c_k}^{*'}(k-1)$ and $S_{c_k}^{*'}(k+1)$ are nonzero and of different sign. A reasoning as above shows that for $k \ge 2$ there have to exist local extreme values in]k - 1, k[and]k, k + 1[, and in k (with modifications for k = 1 as stated in Theorem 1). A counting argument as above shows that $S_{c_k}^{*}(x) \ne 1$ for all positive $x \notin \mathbb{N}$.

Having established the existence of the order-reversing bijection $c \mapsto x(c)$ of]0, 1] onto $[0, \infty[$ we may consider its inverse $x \mapsto c(x)$ given by the solution of the equations

$$\begin{split} c(x) \cdot g'(x) + S_0^{*\prime}(x) &= 0 \qquad \text{for} \quad x = k \in \mathbb{N}, \\ c(x) \cdot g(x) + S_0^{*}(x) &= 1 \qquad \text{for} \quad 0 < x \notin \mathbb{N}. \end{split}$$

Explicitly, we get

$$c(k) = c_k \quad \text{for} \quad x = k \in \mathbb{N},$$

$$c(x) = \frac{\pi x}{\sin(\pi x)} - \frac{x}{1-x} + \sum_{j=1}^{\infty} \frac{64jx(2x-1)}{[(4j+1)^2 - (2x-1)^2][(4j-1)^2 - (2x-1)^2]}$$

for $0 < x \notin \mathbb{N}.$

The function c(x) and its inverse function x(c) are real analytic as may be seen entering the second line of arguments leading to a proof of Theorem 2. Continuing on (4) observe that by [1, 1.422.3] for $x \notin \mathbb{N}$

$$\frac{\pi}{\sin(\pi x)} = \frac{1}{x} + \sum_{j=1}^{\infty} (-1)^j \left(\frac{1}{x-j} + \frac{1}{x+j}\right)$$
$$= -\frac{1}{x} + \sum_{j=0}^{\infty} (-1)^j \left(\frac{1}{j+x} - \frac{1}{j-x}\right)$$
$$= -\frac{1}{x} + \beta(x) - \beta(-x),$$

and, therefore,

$$S_{c}^{*}(x) - 1 = c \frac{\sin(\pi x)}{\pi x} + S_{0}^{*}(x) - 1$$

= $\frac{\sin(\pi x)}{\pi x} (c - x\beta(x) - x\beta(-x) + 1 - x\beta(x) + x\beta(-x))$
= $\frac{\sin(\pi x)}{\pi x} (c + 1 - 2x\beta(x)).$ (13)

The function $x\beta(x)$ is meromorphic with simple poles in $-\mathbb{N}$, therefore S_c^* is an entire function.

By (13) we have $S_c^*(x) = 1$ iff $x \in \mathbb{N}$ or $c = 2x\beta(x) - 1$. Let us therefore define $c(x) = 2x\beta(x) - 1$ and consider x > -1. By [1, 3.251.7] (where the range of validity should read Re $\mu > -1$ (cf. [4, Section 68, (2), p. 169]) we have

$$c(x) = 4 \int_{0}^{1} \frac{t^{2x+1}}{(1+t^{2})^{2}} dt$$

$$= 2 \int_{0}^{1} \frac{t^{x} dt}{(1+t)^{2}} \quad \text{for} \quad x > -1,$$

$$c'(x) = 2 \int_{0}^{1} \frac{t^{x} \log(t)}{(1+t^{2})^{2}} dt < 0 \quad \text{for} \quad x > -1,$$

$$\lim_{x \to \infty} c(x) = 0,$$

$$\lim_{x \to -1} c(x) = \infty$$

$$c(0) = 1.$$

(14)

Remark 1. For $n \in \mathbb{N}$ by [1, 8.375.2] and in agreement with (7) and (12) we have

$$c(n) = 2n\beta(n) - 1$$

= 2n(-1)ⁿ⁺¹ $\left[\log(2) + \sum_{j=1}^{n-1} \frac{(-1)^j}{j} \right] - 1;$

in particular,

$$c(1) = 2 \log(2) - 1 \approx 0.386,$$

$$c(2) = 3 - 4 \log(2) \approx 0.227,$$

$$c\left(\frac{1}{2}\right) = 2 \int_0^1 \frac{\sqrt{t} \, dt}{(1+t)^2}$$

$$= \frac{\pi}{2} - 1 \approx 0.571.$$

Since

$$\beta(x+1) = \frac{1}{x} - \beta(x)$$

we get

$$c\left(n+\frac{1}{2}\right) = (-1)^n \frac{(2n+1)\pi}{2} + 2(2n+1)\sum_{k=1}^n \frac{(-1)^{n+k}}{2k-1} - 1;$$

in particular

$$c\left(\frac{3}{2}\right) = 5 - \frac{3\pi}{2} \approx 0.288.$$

Remark 2. As apparant from (14) the function c(x) is monotonically decreasing on the interval $]-1, \infty[$. The real analytic bijective mapping $c = c(x) \Leftrightarrow x = x(c)$ may therefore be extended to a decreasing mapping $]0, \infty[\leftrightarrow]-1, \infty[$.

Remark 3. From (13) one may infer that

$$|S_c^*(z)| \leq C \cdot e^{\pi |\operatorname{Im}(z)|} \quad \text{for} \quad z \in \mathbb{C}.$$

By the Paley–Wiener theorem [6, VI.4 and I.13], S_c^* is the Fourier transform of a distribution with compact support. In the case of c = 0, this Fourier transform representation is in fact given by

$$S_0^*(x) = \frac{i}{2\pi} \lim_{\varepsilon \to 0} \left\{ \int_{-\pi}^{-\varepsilon} e^{-ix\xi} \cot\left(\frac{\xi}{2}\right) d\xi + \int_{\varepsilon}^{\pi} e^{-ix\xi} \cot\left(\frac{\xi}{2}\right) d\xi \right\}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(x\xi) \cot\left(\frac{\xi}{2}\right) d\xi.$$

Remark 4. In order to inspect some numerical evidence put $c = c(3/2) \approx 0.288$. For the evaluation of

$$S_0^*(x) = -\frac{\sin(\pi x)}{\pi} \left(\beta(x) + \beta(-x)\right),$$

one can use the fast convergent series

$$\beta(x) = \sum_{j=0}^{\infty} \frac{j! \, 2^{-j-1}}{x(x+1)\cdots(x+j)};$$

cf. [1, 8.372.3]. A computation of values of S_c^* to three decimals with stepsize 0.01 reveals the local extreme values:

 $S_c^*(1.19) \approx 1.008$ $S_c^*(1.75) \approx 0.996$ $S_c^*(2.52) \approx 1.013$ $S_c^*(3.50) \approx 0.986$ $S_c^*(4.49) \approx 1.013$

from which one may infer that

$$|S_c^*(x) - 1| \leq 0.014 \quad \text{for all} \quad x \geq 1,$$

but

 $S_c^*(-1.40) \approx -1.128$

Note that to the right of 1 the maximal deviation of S_c^* from 1 appears with abscissa ≈ 3.50 .

Suppose the intention is now to reduce the Gibbs phenomenon by an appropriate choice of $c = \mathbf{c}$ as much as possible in the following sense: to the right of the first point in which the graph of S_c^* crosses the level 1 the deviation of S_c^* from 1 should be as small as possible. Numerical evidence seems to indicate that this is obtained for $\mathbf{c} \approx 0.265$ with a corresponding value of $x(\mathbf{c}) \approx 1.66$ (Fig. 2). In $x_1 \approx 1.22$ the function S_c^* attains an absolute maximum $S_c^*(x_1) \approx 1.012$, in $x_2 \approx 3.50$ a local minimum $S_c^*(x_2) \approx 0.988$, and $S_c^*(x_1) \ge S_c^*(x_2)$ for $x \ge 1$. S_c^* is still monotonically increasing in [-1, 1] and assumes in $x_3 \approx -1.40$ an absolute minimum value $S_c^*(x_3) \approx -1.123$.

FIGURE 2

FIGURE 3

As a consequence, defining the value of a function f at a jump node x_0 to be

$$f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2} + \mathbf{c} \cdot \frac{f(x_0^+) - f(x_0^-)}{2}$$

the Gibbs phenomenon for Fourier interpolation with 2n equidistant nodes is reduced to an eventual deviation of less than 1.2% of $(f(x_0^+) - f(x_0^-))/2$ from the function value f(x) to the right side of x_0 , at the cost of increasing the absolute undershoot to the left side of x_0 to approximately 12.3% of $(f(x_0^+) - f(x_0^-))/2$. This should be compared with the maximal overshoot of 17.9% of half the jump size for the classical Gibbs phenomenon and of 28.2% of half the jump size for c = 1. In this last case (Fig. 3) the function S_1^* assumes the same form as if the jump occurred outside of a node, e.g., in an irrational multiple of π instead of in 0.

REFERENCES

- 1. I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products," Academic Press, New York/London, 1965.
- G. Helmberg, The Gibbs phenomenon for Fourier interpolation, J. Approx. Theory 78 (1994), 41–63.
- 3. G. Helmberg, A limit function for equidistant Fourier interpolation, J. Approx. Theory 81 (1995), 389–396.
- 4. N. Nielsen, "Die Gammafunktion," Chelsea, New York, 1965.
- 5. H. R. Schwarz, "Numerische Mathematik," A. G. Teubner, Stuttgart, 1986.
- 6. K. Yosida, "Functional Analysis," Springer-Verlag, Berlin/Heidelberg/New York, 1966.
- 7. A. Zygmund, "Trigonometric Ser.," Vols. 1, 2, Cambridge Univ. Press, Cambridge, 1968.