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The Fourier interpolation polynomials of a periodic function with an isolated
jump discontinuity at a node exhibit for growing order a Gibbs phenomenon. By
a suitable definition of the function value at the jump the over- and undershoots on
one side may be minimized. � 1997 Academic Press

Gibbs' phenomenon appears when a periodic function f (of period 2?,
say), having a jump discontinuity, is approximated by the partial sums sn

of its Fourier series. Under fast Fourier transformation, f is interpolated
instead by a trigonometric polynomial sn* of order n (say) in 2n nodes
j?�n (&n< j �n) [5]. Also in this case, a Gibbs phenomenon may be
observed with, however, other overshoot and undershoot values [2]. If the
jump occurs at an interpolation node, the shape of the Gibbs phenomenon
depends on the value of f at the jump (which would be irrelevant for the
partial sums sn ). The purpose of this note is to exhibit the influence of this
value on the shape of the Gibbs phenomenon.

As for mean square approximation by sn , also for interpolation by sn* the
Riemann localization principle and the uniform convergence in continuity
points are valid [7]. In order to study Gibbs' phenomenon, it therefore
suffices, without loss of generality, to consider the function fc defined by

fc(x)={
&1
c
1
&c

for &?<x<0,
for x=0,
for 0<x<?,
for x=?.

(1)

As n � �, the corresponding interpolation functions given for even n by

s*c, n=
sin(nx)

n _ c
sin(x)

+ :
n&1

j=1

(&1) j

sin(x& j?�n)&

article no. AT963056

308
0021-9045�97 �25.00
Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.



File: 640J 305602 . By:XX . Date:13:05:97 . Time:08:37 LOP8M. V8.0. Page 01:01
Codes: 1938 Signs: 1041 . Length: 45 pic 0 pts, 190 mm

converge pointwise to the limit function Sc* given by

Sc*(x)= lim
n � �

s*c, n \?
n

x+
=c }

sin(?x)
?x

+
sin(?x)

?

_{ 1
1&x

& :
�

k=1

64k(2x&1)
[(4k+1)2&(2x&1)2][(4k&1)2&(2x&1)2]=

(2)

(This is an easy consequence of the formula in [3, Remark 1, p. 393].) The
function S0* (the second term of the right member) is odd and it inherits
its shape from the functions s*0, n : it assumes exactly one extreme value
(alternatingly a maximum and a minimum) in the intervals ]k, k+1[
while S0*(k)=1 (k # N) (Fig. 1). Roughly stated, the superposition of S0*
and of the function g defined by

g(x)={
sin(?x)

?x
for x{0,

1 for x=0

in (2) has the following effect: as c increases from 0 to 1, an additional
node xc with Sc*(xc)=1 appears and moves from � to 0. This node intro-
duces in the interval [k, k+1] to which it belongs precisely one additional
local extremum. This allows us to reduce��to the right of zero��the devia-
tion of the extreme values of Sc* from the interpolation value 1, at the cost
of increasing this deviation to the left of zero.

Figure 1

309MANIPULATING GIBBS' PHENOMENON



File: 640J 305603 . By:DS . Date:23:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 2292 Signs: 1215 . Length: 45 pic 0 pts, 190 mm

These heuristic explanations are made exact by the following theorems.

Theorem 1. There is a bijection c [ x(c) of ]0, 1] onto [0, �[ enjoying
the following properties:

(a) Sc*(x(c))=1;

(b) c [ x(c) is monotonically decreasing from � to 0 on ]0, 1];

(c) if x(c) # ]k, k+1[ (k # N), then Sc* has precisely one local
extremum in each of the intervals

] j, j+1[ (1� j <k; a maximum for odd j, a minimum for even j );

]k, x(c)[ (a maximum for odd k, a minimum for even k);

]x(c), k+1[ (a minimum for odd k, a maximum for even k);

] j, j+1[ (k+1� j <�; a minimum for odd j, a maximum

for even j );

(d) if x(c) # [0, 1[ , then Sc* has precisely one local extremum in each
of the intervals

] j, j+1[ (0� j <�; a minimum for odd j, a maximum for even j );

(e) if x(c)=k�1, then Sc* has precisely one local extremum in k
(with value Sc*(k)=1, a maximum for odd k, a minimum for even k) and in
each of the intervals

] j, j+1[ (1� j <k; a maximum for odd j, a minimum for even k);

(k� j <�; a minimum for odd k, a maximum for even k).

(f ) In any case, Sc* is monotonically increasing in [&1, 0] and has a
unique extremum in each of the intervals

]&j&1, &j[ ( j # N; a minimum for odd j, a maximum for even j ).

Theorem 2. The function x(c) on ]0, 1] and its inverse function c(x) on
[0, �[ are real analytic and given by

c(x)=2 |
1

0

tx dt
(1+t)2 .
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We shall present proofs for these theorems along two lines of arguments.
The proof of Theorem 1 uses elementary properties of trigonometric poly-
nomials as well as known properties of the functions S0*, g and of the
values of these functions and their derivatives at the points k (k # Z). The
arguments used for the proof of Theorem 2 at the same time furnish an
alternative proof for the assertions (a)�(c) of Theorem 1; they rely on
properties of function ;(x) as listed in [1] and on the partial fraction
decomposition of 1�sin(?x).

From [2, 3] we retain the following facts.

Lemma 0. The function S0* is odd and enjoys the following properties:

(a0 ) S0*(k)=1 for k # N; S0*(0)=0;

(b0 ) S0* is monotonically increasing in [0, 1];

(c0 ) S0* has precisely one extremum in each of the intervals ] j, j+1[
( j # N; a maximum for j odd, a minimum for j even).

(These statements are consequences of corresponding properties of the
interpolating trigonometric polynomials s*0, n converging to S0*.)

In formula (2) S0* appears as the sum of a series converging as fast as
��

k=1 1�k3. This representation somewhat blurs its source which is revealed
by the formula

?
sin(?x)

S0*(x)=
1

1&x
&2 :

�

j=1
_\ 1

(4 j&1)&(2x&1)
&

1
(4 j&1)+(2x&1)+

&\ 1
(4 j+1)&(2x&1)

&
1

(4 j+1)+(2x&1)+&
= :

�

j=1

(&1) j+1 \ 1
j&x

+
1

j+x+ (3)

=&;(x)&;(&x), (4)

where

;(x)= :
�

j=0

(&1) j

j+x
[1, 8.372.1].

Fixing some k # N and disregarding the term 1�(k&x), differentiation of
the series (3) furnishes a series converging uniformly in x # ]k& 3

4 , k+ 3
4 [.

The same is then true for differentiation of S0*, since sin(?x)�(k&x) is con-
tinuously differentiable. As a consequence, S0* is continuously differentiable
on R.
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Considering the derivative of S0* at nonnegative x � N, we obtain

S0*$(x)=cos(?x) :
�

j=1

(&1) j+1 _ 1
j&x

+
1

j+x&
+

sin(?x)
?

:
�

j=1

(&1) j+1 _ 1
( j&x)2&

1
( j+x)2& .

For x=0 this gives

S0*$(0)=2 :
�

j=1

(&1) j+1

j
=2 log 2.

For x � k # N observe that, by sin(?x)=(&1)k+1 sin(?(k&x)), we have

lim
x � k

cos(?x)+sin(?x)�(?(k&x))
k&x

= lim
x � k

cos(?x)+(&1)k+1 sin(?(k&x))�(?(k&x))
k&x

= lim
x � k _&? sin(?x)+(&1)k+1 \sin(?(k&x))

?(k&x) +$&<(&1)

=0.

Using the continuity of S0*$ we obtain

S0*$(k)=(&1)k+1 _1
k

+2 :
�

j=1

(&1) j

k+j & (5)

=(&1)k+1 :
�

j=0

(&1) j _ 1
k+2 j

&
2

k+2 j+1
+

1
k+2 j+2&

=(&1)k+1 :
�

j=0

2
(k+2 j )(k+2 j+1)(k+2 j+2)

. (6)

From (5) and (6) we deduce that (for the upper estimate suppose that
k>2)

S0*$(k)=2 _log 2&\ :
k&1

j=1

(&1) j+1

j
+

(&1)k+1

2k +& , (7)

1
2(k+1)2�|S0*$(k)|�

1
2(k&2)2 . (8)
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Since Sc*=c } g+S0* (2), we list without proof the properties of the func-
tion g as compared to those of S0* established in Lemma 0 (Fig. 1).

Lemma 1. The function g is even and enjoys the following properties:

(a1 ) g(k)=1 for k=0; g(k)=0 for k # N;

(b1 ) g is monotonically decreasing in [0, 1];

(c1 ) g has precisely one extremum in each of the intervals ] j, j+1[
( j # N; a minimum for j odd, a maximum for j even).

Note that g$(k)=(&1)k�k for k{0. Comparing the values of the func-
tions S0*, g, and of their derivatives we deduce from (6), (7), and (8):

sign g(x)={sign(S0*(x)+1)
&sign(S0*(x)&1)

for x�&1,
for x�1,

(9)

sign g$(k)=&sign S0*$(k) for k # N, (10)

| g$(k)|>|S0*$(k)|. (11)

We now study the effect of adding c } g to S0* for 0<c�1. By (9) we see
that in ]&�, &1] only the ``hills'' of the graph of S0* are heightened and
the ``valleys'' are deepened. Also by (9) it is to be expected that in [1, �[
this effect is reversed and, in fact, also the type of the extrema may be
changed. While in [&1, 0] the function Sc* obviously increases from &1
to c, the situation in [0, 1] may depend on c.

For k # N, we observe that by (10), (11), and by the linearity in c of
(c } g)$ (k) there has to exist a solution ck # ]0, 1[ of the equation

ck } g$(k)+S0*$(k)=0;

in fact,

ck=k :
�

j=0

2
(k+2 j )(k+2 j+1)(k+2 j+2)

by (6). (12)

For formal reasons we put c0=1.

Lemma 2. (i) 1>c1> } } } >ck>ck+1> } } } >0;

(ii) limk � � ck=0.

Proof. The last inequality of (i) and assertion (ii) are evident (cf. also
(12)), the first inequality of (i) follows from (5) or (11). In order to show
ck>ck+1 put uk=(&1)k+1 S0*$(k) and observe
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uk�uk+1 by (6),

uk=
2

k(k+1)(k+2)
+uk+2 by (6),

ck&ck+2=kuk&(k+2)uk+2 by (12),

=2 \ 1
k+1

&
1

k+2
&uk+2+

=2uk+1 by (5).

We conclude

ck=2 :
�

j=0

uk+1+2 j

from which our assertion follows. K

Theorem 1 now follows from Propositions 1 and 2 below.

Proposition 1. For c # ]ck+1 , ck [ (k # N), resp. for c # ]c1 , 1] (k=0)
there exists a unique x(c) # ]k, k+1[ such that

(a$) Sc*(x(c))=1;

(b$) x(c) decreases monotonically from k+1 to k on ]ck+1 , ck [;

(c$) Sc* has precisely one local extremum in each of the intervals as
mentioned in Theorem 1(c), (resp. Theorem 1(d)).

Proof. The derivative of Sc* in the positive nodes j # N is

Sc*$( j )=c
(&1) j

j
+(&1) j+1 uj

=
(&1) j

j
(c&juj )

=
(&1) j

j
(c&cj ).

If c # ]ck+1, ck [ , then

c&cj {<
>

ck&cj

ck+1&cj

�0
�0

for j�k,
for j �k+1.
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Consequently, the sign of Sc*$( j ) is alternating for j�k (and the same as
that of S0*$( j )) as well as for j�k+1 (and the opposite as that of S0*$( j )),
while it is the same for j=k and j=k+1. Since Sc*( j )=1 and since Sc* is
continuously differentiable, there has to exist a x(c) # ]k, k+1[ such that
Sc*(x(c))=1, and there must exist at least two local extreme values (a max-
imum and a minimum) instead of one in this interval. The number of local
extreme values of Sc* in ]0, n[ (n�k+1) is therefore at least n.

Suppose now there were an additional point x� c in some interval ] j, j+1[
( j # N0) satisfying Sc*(x� c)=1. Then there would have to exist a second one
x�� c # ] j, j+1[ (possibly coinciding with x� c ) satisfying Sc*(x�� c)=1. This
would introduce two additional local extreme values for Sc* in ] j, j+1[.
Since Sc* is the pointwise limit of a sequence of trigonometric polynomials
(2), there would have to be a trigonometric polynomial

hn(x)=s*c, n \?x
n +

of even order n with period 2n such that the graph of hn has at least n+1
local extreme values between 0 and n. Note that hn satisfies the symmetry
relation

hn(x&n)=s*c, n \?x
n

&?+=&hn(x).

The number of local extreme values of hn in a period would then be at least
2n+2 which is impossible.

Consider now the case c1<c<1=c0 . Then Sc*$(1)<0, so there exists
x(c) # ]0, 1[ such that Sc*(x(c))=1 and there has to exist a local maxi-
mum of Sc* in ]x(c), 1[. This last assertion is trivial for c=1 and x(c)=0.
The same reasoning as before asserts the uniqueness of x(c) in these cases.

In order to show assertion (b$), for simplicity suppose k to be odd
(a similar reasoning applies for even k). Then

Sc*(x)&1{>0
<0

for x # ]k, x(c)[ ,
for x # ]x(c), k+1[ ,

and g(x)<0 in ]k, k+1[. Let ck>c� >c>ck+1. Then

Sc�*(x)=Sc*(x)+(c� &c) g(x)<Sc*(x) for x # ]k, k+1[

and therefore x(c� )<x(c). K

Proposition 2. For k # N and c=ck let x(ck)=k. Then S*c k (x(ck))=1
and S*ck has a local extremum in k (a maximum for k odd, a minimum for
k even) and precisely one local extreme value in any of the intervals as
mentioned in Theorem 1(e).
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Proof. If c=ck (k # N) then S*$ck (k)=0 while S*$c k (k&1) and S*$c k (k+1)
are nonzero and of different sign. A reasoning as above shows that for
k�2 there have to exist local extreme values in ]k&1, k[ and ]k, k+1[,
and in k (with modifications for k=1 as stated in Theorem 1). A counting
argument as above shows that S*c k (x){1 for all positive x � N. K

Having established the existence of the order-reversing bijection c [ x(c)
of ]0, 1] onto [0, �[ we may consider its inverse x [ c(x) given by the
solution of the equations

c(x) } g$(x)+S0*$(x)=0 for x=k # N,

c(x) } g(x)+S0*(x)=1 for 0<x � N.

Explicitly, we get

c(k)=ck for x=k # N,

c(x)=
?x

sin(?x)
&

x
1&x

+ :
�

j=1

64 jx(2x&1)
[(4 j+1)2&(2x&1)2][(4 j&1)2&(2x&1)2]

for 0<x � N.

The function c(x) and its inverse function x(c) are real analytic as may
be seen entering the second line of arguments leading to a proof of
Theorem 2. Continuing on (4) observe that by [1, 1.422.3] for x � N

?
sin(?x)

=
1
x

+ :
�

j=1

(&1) j \ 1
x&j

+
1

x+j +
=&

1
x

+ :
�

j=0

(&1) j \ 1
j+x

&
1

j&x+
=&

1
x

+;(x)&;(&x),

and, therefore,

Sc*(x)&1=c
sin(?x)

?x
+S0*(x)&1

=
sin(?x)

?x
(c&x;(x)&x;(&x)+1&x;(x)+x;(&x))

=
sin(?x)

?x
(c+1&2x;(x)). (13)

316 HELMBERG AND WAGNER



File: 640J 305610 . By:DS . Date:23:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 1710 Signs: 688 . Length: 45 pic 0 pts, 190 mm

The function x;(x) is meromorphic with simple poles in &N, therefore Sc*
is an entire function.

By (13) we have Sc*(x)=1 iff x # N or c=2x;(x)&1. Let us therefore
define c(x)=2x;(x)&1 and consider x>&1. By [1, 3.251.7] (where the
range of validity should read Re +>&1 (cf. [4, Section 68, (2), p. 169]) we
have

c(x)=4 |
1

0

t2x+1

(1+t2 )2 dt

(14)

=2 |
1

0

tx dt
(1+t)2 for x>&1,

c$(x)=2 |
1

0

tx log(t)
(1+t2 )2 dt<0 for x>&1,

lim
x � �

c(x)=0,

lim
x � &1

c(x)=�

c(0)=1.

Remark 1. For n # N by [1, 8.375.2] and in agreement with (7) and
(12) we have

c(n)=2n;(n)&1

=2n(&1)n+1 _log(2)+ :
n&1

j=1

(&1) j

j &&1;

in particular,

c(1)=2 log(2)&1r0.386,

c(2)=3&4 log(2)r0.227,

c \1
2+=2 |

1

0

- t dt
(1+t)2

=
?
2

&1r0.571.

Since

;(x+1)=
1
x

&;(x)
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we get

c \n+
1
2+=(&1)n (2n+1)?

2
+2(2n+1) :

n

k=1

(&1)n+k

2k&1
&1;

in particular

c \3
2+=5&

3?
2

r0.288.

Remark 2. As apparant from (14) the function c(x) is monotonically
decreasing on the interval ]&1, �[. The real analytic bijective mapping
c=c(x) � x=x(c) may therefore be extended to a decreasing mapping
]0, �[ W ]&1, �[ .

Remark 3. From (13) one may infer that

|Sc*(z)|�C } e? |Im(z)| for z # C.

By the Paley�Wiener theorem [6, VI.4 and I.13], Sc* is the Fourier trans-
form of a distribution with compact support. In the case of c=0, this
Fourier transform representation is in fact given by

S0*(x)=
i

2?
lim
= � 0 {|

&=

&?
e&ix! cot \!

2+ d!+|
?

=
e&ix! cot \!

2+ d!=
=

1
2? |

?

&?
sin(x!) cot \!

2+ d!.

Remark 4. In order to inspect some numerical evidence put
c=c(3�2)r0.288. For the evaluation of

S0*(x)=&
sin(?x)

?
( ;(x)+;(&x)),

one can use the fast convergent series

;(x)= :
�

j=0

j ! 2&j&1

x(x+1) } } } (x+j )
;

cf. [1, 8.372.3]. A computation of values of Sc* to three decimals with
stepsize 0.01 reveals the local extreme values:
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Sc*(1.19)r1.008

Sc*(1.75)r0.996

Sc*(2.52)r1.013

Sc*(3.50)r0.986

Sc*(4.49)r1.013

from which one may infer that

|Sc*(x)&1|�0.014 for all x�1,

but

Sc*(&1.40)r&1.128

Note that to the right of 1 the maximal deviation of Sc* from 1 appears
with abscissa r3.50.

Suppose the intention is now to reduce the Gibbs phenomenon by an
appropriate choice of c=c as much as possible in the following sense: to
the right of the first point in which the graph of Sc* crosses the level 1 the
deviation of Sc* from 1 should be as small as possible. Numerical evidence
seems to indicate that this is obtained for cr0.265 with a corresponding
value of x(c)r1.66 (Fig. 2). In x1r1.22 the function Sc* attains an
absolute maximum Sc*(x1)r1.012, in x2r3.50 a local minimum Sc*(x2)r

0.988, and Sc*(x1)�Sc*(x)�Sc*(x2) for x�1. Sc* is still monotonically
increasing in [&1, 1] and assumes in x3r&1.40 an absolute minimum
value Sc*(x3)r&1.123.

Figure 2
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Figure 3

As a consequence, defining the value of a function f at a jump node x0

to be

f (x0 )=
f (x+

0 )+f (x&
0 )

2
+c }

f (x+
0 )&f (x&

0 )
2

the Gibbs phenomenon for Fourier interpolation with 2n equidistant nodes
is reduced to an eventual deviation of less than 1.20 of ( f (x+

0 )&f (x&
0 ))�2

from the function value f (x) to the right side of x0 , at the cost of increasing
the absolute undershoot to the left side of x0 to approximately 12.30 of
( f (x+

0 )&f (x&
0 ))�2. This should be compared with the maximal overshoot

of 17.90 of half the jump size for the classical Gibbs phenomenon and of
28.20 of half the jump size for c=1. In this last case (Fig. 3) the function
S1* assumes the same form as if the jump occurred outside of a node, e.g.,
in an irrational multiple of ? instead of in 0.
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